Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jonathan D Crane* and Matthew Whittingham

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

Correspondence e-mail: j.d.crane@hull.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.030$
$w R$ factor $=0.060$
Data-to-parameter ratio $=19.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(1,1,5,5-tetramethyl-2-thiobiuretato)nickel(II)

At 150 K , the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OS}\right)_{2}\right]$, comprises a cis square-planar nickel(II) ion with two anionic bidentate 1,1,5,5-tetramethyl-2-thiobiuretate ligands. All non-H atoms lie on a crystallographic mirror plane.

Comment

The title compound, (I), is the neutral homoleptic nickel(II) complex of the anionic bidentate $1,1,5,5$-tetramethyl-2-thiobiuretate ligand. The complex is cis square-planar (Table 1) and all non-H atoms lie on a crystallographic mirror plane (Fig. 1).

(I)

In both of the ligands, the pattern of bond distances is similar to that observed for the corresponding homoleptic cobalt(III) complex reported by Crane \& Whittingham (2004) and indicates that the formal negative charge is predominately localized on the S atom. The relatively long $\mathrm{C}-\mathrm{S}$ and short $\mathrm{C}-\mathrm{O}$ average bond lengths $[1.747$ (4) and 1.261 (3) \AA] are consistent with mostly single- and double-bond character, respectively, and this bond localization is also reflected in the average $\mathrm{C}-\mathrm{N}$ bond distances to the central N atom, viz. 1.323 (7) \AA in the (iso)thiourea group and 1.348 (7) \AA in the urea group.

Figure 1
A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Only one of the disordered positions for each methyl group is shown.

Received 16 March 2004
Accepted 18 March 2004
Online 27 March 2004

Figure 2
The packing and unit cell of (I), viewed down the b axis. H atoms have been omitted.

The molecules are packed in layers (Figs. 3 and 4) perpendicular to the b axis, with an interlayer spacing of 3.5062 (3) \AA. Of the shortest non-H interatomic contact distance between layers (Table 2), the shortest involving the S atoms is 3.5986 (5) \AA for S 2 and $\mathrm{N} 5^{\mathrm{i}}$ [symmetry code: (i) $-x$, $1-y,-z]$.

Experimental

The title compound, (I), was prepared by a variation of the method of Koenig et al. (1987). Dimethylcarbamyl chloride ($1.08 \mathrm{~g}, 10 \mathrm{mmol}$) and potassium thiocyanate $(0.97 \mathrm{~g}, 10 \mathrm{mmol})$ in acetonitrile (40 ml) were heated at reflux for 2 h . The solution was allowed to cool to room temperature and excess 40% aqueous dimethylamine (3.4 ml , 30 mmol) was added with stirring, followed after 15 min by nickel(II) acetate tetrahydrate ($1.25 \mathrm{~g}, 5 \mathrm{mmol}$) and water (5 ml). After stirring for a further 15 min , the crude product was obtained as a purple powder by precipitation with methanol (200 ml), isolation by filtration and washing sequentially with water, methanol and diethyl ether. Suitable crystals were grown by recrystallization from dichloromethane/methanol: yield $1.07 \mathrm{~g}, 53 \%$. Spectroscopic analysis: IR (KBr disk, cm^{-1}): v 2921 (w), 1540 (s), 1481 (s), 1389 (s), 1357 (s), 1266 (w), 1198 (w), 1115 (m), 1031 (m), 734 (m), 474 (w); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): $\delta 3.18$ (br, $s, 6 \mathrm{H}$), 3.08 ($\left.b r, s, 6 \mathrm{H}\right), 2.96(s, 6 \mathrm{H}), 2.87(s$, 6 H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, p.p.m.): $\delta 171.3,163.1,40.1,39.7,37.4,35.9$. Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{NiO}_{2} \mathrm{~S}_{2}$: C 35.40, H 5.94, N 20.64 , S 15.75%; found: C 35.49 , H 6.03, N 20.49 , S 15.71%.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OS}\right)_{2}\right]$
$M_{r}=407.20$
Orthorhombic, Pnma
$a=13.9350$ (10) \AA
$b=7.0123$ (5) A
$c=18.4739(18) \AA$
$V=1805.2(3) \AA^{3}$
$Z=4$
$D_{x}=1.498 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 10003 reflections
$\theta=2.2-30.0^{\circ}$
$\mu=1.32 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Plate, purple
$0.20 \times 0.18 \times 0.02 \mathrm{~mm}$

The packing and unit cell of (I), viewed down the c axis.

Figure 4
The packing of one layer of molecules of (I), parallel to the ac plane. H atoms have been omitted.

Data collection

Stoe IPDS-II area-detector diffractometer
ω scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 2001)
$T_{\min }=0.630, T_{\max }=0.751$
18236 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.060$
$S=0.87$
2820 reflections
148 parameters
H -atom parameters constrained

2820 independent reflections
1936 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.065$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-16 \rightarrow 19$
$k=-9 \rightarrow 9$
$l=-25 \rightarrow 25$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0271 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.36 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0017 (3)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Ni1-O1	$1.8694(17)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.316(3)$
Ni1-O2	$1.8634(15)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.355(3)$
Ni1-S1	$2.1374(7)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.353(3)$
$\mathrm{Ni} 1-\mathrm{S} 2$	$2.1386(7)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.351(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.743(2)$	$\mathrm{N} 4-\mathrm{C} 7$	$1.329(3)$
$\mathrm{S} 2-\mathrm{C} 7$	$1.750(2)$	$\mathrm{N} 4-\mathrm{C} 8$	$1.341(3)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.261(3)$	$\mathrm{N} 5-\mathrm{C} 7$	$1.333(3)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.260(3)$	$\mathrm{N} 6-\mathrm{C} 8$	$1.366(3)$
			$133.73(16)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{S} 1$	$95.16(6)$	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Ni} 1$	$134.24(17)$
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{S} 2$	$94.65(6)$	$\mathrm{C} 8-\mathrm{O} 2-\mathrm{Ni} 1$	$123.6(2)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$	$84.45(8)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$123.39(19)$
$\mathrm{S} 1-\mathrm{Ni} 1-\mathrm{S} 2$	$85.75(3)$	$\mathrm{C} 7-\mathrm{N} 4-\mathrm{C} 8$	$129.24(18)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{S} 2$	$179.10(6)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$129.2(2)$
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{S} 1$	$179.60(7)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	$128.39(18)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Ni} 1$	$109.05(8)$	$\mathrm{N} 4-\mathrm{C} 7-\mathrm{S} 2$	$129.8(2)$
$\mathrm{C} 7-\mathrm{S} 2-\mathrm{Ni} 1$	$109.52(8)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 4$	

Table 2
Interlayer contact distances (\AA) less than $3.6 \AA$ for non- H atoms.

$\mathrm{S} 2 \cdots \mathrm{~N} 5^{\mathrm{i}}$	$3.5986(5)$	$\mathrm{N} 6 \cdots \mathrm{C}^{\mathrm{iii}}$	$3.5470(6)$
$\mathrm{C} 2 \cdots \mathrm{C}^{\mathrm{ji}}$	$3.5161(4)$	$\mathrm{N} 2 \cdots \mathrm{C}^{\mathrm{iv}}$	

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x, 1-y,-z$; (iii) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (iv) $\frac{1}{2}-x, 1-y, z-\frac{1}{2}$.

All H atoms were initially located in a difference Fourier map. The methyl H atoms were constrained to an ideal geometry, with a $\mathrm{C}-\mathrm{H}$ distance of $0.98 \AA$, and $U_{\text {iso }}(\mathrm{H})$ was set to $1.2 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $X-\mathrm{C}$ bond. In their final positions, none of the methyl groups accords with the crystallographic mirror symmetry and hence each methyl group is disordered 50:50 about the mirror plane.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-AREA; data reduction: X-RED (Stoe \& Cie, 2001); program(s)
used to solve structure: X-STEP32 (Stoe \& Cie, 2001) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX and PLATON (Spek, 2001).

References

Crane, J. D. \& Whittingham, M. (2004). Acta Cryst. E60, m350-m351.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Koenig, K. H., Kaul, L., Kuge, M. \& Schuster, M. (1987). Liebigs Ann. Chem. pp. 1115-1116.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.
Stoe \& Cie (2001). X-AREA, X-RED, X-SHAPE and X-STEP32. Stoe \& Cie GmbH, Darmstadt, Germany.

